AI - Project Nessie

Empowering efficient and reliable data lake management through Project Nessie's Git-like catalog solution based on Iceberg format.

Logo of Project Nessie
Last Audited At

About Project Nessie

Project Nessie is a Transactional Catalog for Data Lakes, developed with Git-like semantics. It provides a platform for managing and versioning data lake metadata using the Iceberg format. Project Nessie's offerings include compatibility with various versions of Iceberg, Spark, Hive, Flink, and Presto, as well as Trino. Their mission is to make managing large-scale data lakes more efficient and reliable by offering a versioned catalog solution. They use Git-like semantics to enable rollbacks, branching, merging, and other Git operations on metadata, making it easier for users to collaborate and manage their data lake infrastructure. Project Nessie's offerings are built using open-source technologies and are available through various repositories such as Maven Central, PyPI, Quay.io Docker, and Artifact Hub. The platform is compatible with different Iceberg versions and Spark, Hive, Flink, Presto, and Trino variations, ensuring versatility and wide applicability.

Was this page helpful?

More companies

Disco

Transforming media & entertainment: AI video analysis for streamlined production, superior content quality, and enhanced user experiences.

Read more

Outreach

Empowering sales teams with innovative AI solutions for increased win rates and forecast accuracy, enabling effective B2B sales execution with the highest security standards.

Read more

Mem

Bridging the gap between human intuition and data-driven insights through innovative AI solutions's mission to empower organizations with real-time decision-making capabilities.

Read more

Tell us about your project

Our Hubs

London, United Kingdom

A global AI hotspot, thrives on innovation, diverse talent, and a dynamic tech ecosystem, offering unparalleled opportunities for AI engineers.

Munich, Germany

A vibrant AI hub, merges cutting-edge technology with rich cultural experiences, creating an inspiring environment for AI engineers.